Amiga 600 Restoration & Upgrades

I’ve been slowly but surely branching out into Amigas from Commodore’s 8-bit range of computers, and as such I recently got my hands on my first Commodore Amiga 600.

The A600 is a 16-bit computer from the 1990s, and is effectively just a condensed version of the A500 with an onboard IDE and PCMCIA interface.

This A600 was a bit of a basket case, not only in need of a good clean and service, but also some repairs – the computer would not boot correctly, only showing a black screen on startup, and the internal 3.5″ FDD would not load disks (even in another machine).

As it turned out, both of these faults were down to the Achilles’ heel of the later Amigas.

Unlike the A500 which was manufactured using through-hole electrolytic capacitors, the A600 and its big brother the A1200 primarily use surface-mount (SMD) electrolytic capacitors – being a relatively new technology for the time, these capacitors are especially unreliable and frequently leak, causing a lot of problems in this era of computers.

Physically (as opposed to electrically) leaky capacitors not only have compromised performance, but the leaking electrolyte can have corrosive effects on surrounding components and traces, damaging or weakening the PCB.

Electrolytic capacitors can still leak in storage, so the only practical option is to replace them – this is a fiddly job which is not easy do properly, even with the practice and correct tools required for SMD soldering/desoldering, but is definitely worth it.

A600 PCB before electrolytic capacitor replacement.

The first step, therefore, was to replace all of the electrolytic capacitors on the A600’s mainboard – the SMD ICs are generally very reliable, and one electrolytic capacitor in the reset circuit is known to cause black screen faults.

When doing this, I remove the PCB from the case then remove the RF shield and plastic insulating layer; then, I desolder (using a Duratool D00672 set at 350C) and remove the four through-hole electrolytic capacitors as well as the keyboard connector, which gives better access to the SMD capacitors along the back edge of the board; then, one by one I remove all of the SMD electrolytic capacitors using a hot-air rework station (set at 250C and high flow, with a small nozzle installed) and a pair of tweezers, carefully covering any surrounding components with heat-reflective tape and, for large areas, aluminium foil.

I find that if you aim the heat gun at the base of the capacitor for long enough, it will fall of its pads when pushed sideways with barely any force, minimising potential PCB damage.

I then apply rosin flux and leaded solder to all of the newly exposed SMD pads, then desolder it using the desoldering gun, leaving a clean pad – I then clean up all the remaining flux or heat marks using 99.9% IPA.

I would recommend using a fume extractor when doing this kind of work, primarily because of the solder and flux fumes, but also because leaky SMD capacitors have a habit of going pop and letting out all the magic smoke once they’ve heated up.

A600 PCB with all electrolytic capacitors removed.

Once the board has been cleaned up, it’s time to install the new capacitors – for this project I used new capacitors with a solid electrolyte, which won’t suffer from leakage in future.

For this, I install all of the SMD capacitors one by one, making sure to prioritise the least accessible ones, and making sure to install them in the correct orientation – if not, they’ll go pop when the machine is powered on. I usually apply rosin flux to both pads on the board and capacitor, then hold the capacitor in place on the board using BluTack, then tack the capacitor in place using leaded solder and a small-tipped soldering iron (set to 350C).

Then, the through-hold capacitors and keyboard connector get installed – some connections require a higher temperature setpoint on the soldering iron, as the ground plane draws a lot of heat away from the vias.

A600 PCB with all electrolytic capacitors replaced.

After testing, the A600 appeared to be working fine again – happy days! Time for some upgrades – both for cosmetics and for performance.

Initial testing.

First off, I installed a new case as the original was quite rough; I then installed a new 3.5″ FDD, as the original didn’t work; I also dismantled and cleaned the keyboard.

Then, I fitted a KickStart 3.1 ROM, internal IDE-CF adaptor, and an internal WorkBench 3.1 CF card, a solid-state equivalent of a HDD; I also fitted a 1MB Chip RAM expansion with onboard RTC which fits into the PCB’s expansion slot, and a 4MB Fast RAM expansion which fits on top of the CPU; I also fitted a new keyboard membrane.

A600 PCB with all upgrades installed.

I’ve also had some Amiga 1200s on the bench – including my own, pictured below alongside the A600 – also requiring recaps. These will be appearing on the blog soon.

A600 and A1200 on the bench.

Published by themightymadman

A conscientious, intelligent and committed graduate engineer, with excellent interpersonal skills, an eye for detail and a keen interest in hardware design, mathematics, and software development.

One thought on “Amiga 600 Restoration & Upgrades

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: